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Abstract. We present a detailed numerical study of the Ke3 decays to O(p6, (md − mu)p2, e2p2) in chiral
perturbation theory with virtual photons and leptons. We describe the extraction of the CKM matrix
element |Vus| from the experimental Ke3 decay parameters. We propose a consistency check of the K+

e3
and K0

e3 data that is largely insensitive to the dominating theoretical uncertainties, in particular the
contributions of O(p6). Our analysis is highly relevant in view of the recent high statistics measurement
of the K+

e3 branching ratio by E865 at Brookhaven which does not indicate any significant deviation from
CKM unitarity but rather a discrepancy with the present K0

e3 data.

1 Introduction

According to the compilation of the Particle Data Group
(PDG) 2002 [1], the absolute values of the entries in the first
row of the Cabibbo–Kobayashi–Maskawa (CKM) mixing
matrix are given by

|Vud| = 0.9734 ± 0.0008,

|Vus| = 0.2196 ± 0.0026,

|Vub| = 0.0036 ± 0.0010, (1)

which implies a 2.2 σ deviation from unitarity:

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0042 ± 0.0019. (2)

The value for |Vud| in (1) has been extracted from super-
allowed Fermi transitions of several 0+ nuclei and neutron
beta decay, whereas the number for |Vus| is based on more
than thirty-year-old Ke3 data.

The situation has changed dramatically with the
outcome of a new high statistics measurement of the
K+

e3 branching ratio by the E865 Collaboration at Brook-
haven [2]. Their analysis of more than 70 000 K+

e3 events
yielded a branching ratio which was about 2.3 σ larger than
the current PDG value. As a consequence, the value of |Vus|
based on the new experimental result does not indicate any
significant deviation from unitarity. Moreover, besides in-
dicating a sharp disagreement between new and old K+

e3
data, the new result implies an inconsistency between the
K+

e3 and the K0
e3 data.
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The current experimental information on the decay
mode of the neutral kaon is indeed very unsatisfactory.
The two numbers given by PDG 2002 [1],

Γ (K0
e3)fit = (7.50 ± 0.08) × 106 s−1,

Γ (K0
e3)average = (7.7 ± 0.5) × 106 s−1, (3)

differ considerably depending on the procedure for the
treatment of the data. The first value in (3) was obtained
from a constrained fit using all significant measured KL
branching ratios, the second one is a weighted average of
measurements of the K0

e3 ratio only. Apparently, the rate
obtained from the fit is completely driven by input dif-
ferent from the actual measurements. In particular, the
error on the “fitted” value does not reflect at all the ex-
perimental accuracy (the experiments were made in the
sixties and early seventies) but rather the constraints from
the global fit.

Presently, new independent Ke3 decay measurements
are in progress (CMD2, NA48, KLOE) and should help to
clarify the experimental situation.

In this paper, we present a detailed numerical analysis
of the radiative corrections to the K0

e3 Dalitz plot distribu-
tion. We discuss possible strategies to extract |Vus| from
the experimental data and we propose a rather powerful
consistency check of K+

e3 and K0
e3 measurements.

This work is based on our previous calculation [3] of the
K�3 decays to O(p4, (md − mu)p2, e2p2) in chiral pertur-
bation theory with virtual photons and leptons [4]. After
a brief review of the main kinematic features of Ke3 de-
cays and the structure of radiative corrections (Sect. 2),
we recall the structure of the form factors relevant for Ke3
decays including a discussion of the recent results on the
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contributions of order p6 in the chiral expansion in Sect. 3.
Real photon emission in the K0

e3 case is discussed in Sect. 4.
In Sect. 5 we illustrate our general considerations by a nu-
merical study of the K0

e3 decay and the description of a
procedure to extract the CKM matrix element |Vus| from
experimental data. The impact of the E865 experiment
on the determination of |Vus| from K+

e3 data is discussed
in Sect. 6. A specific strategy for a combined analysis of
K0

e3 and K+
e3 data is proposed in Sect. 7. Our conclusions

are summarized in Sect. 8, and three appendices contain
some technical material related to the calculation of loop
contributions and real photon radiation.

2 Kinematics and radiative corrections

The generic Ke3 decay

K(pK) → π(pπ) e+(pe) νe(pν) (4)

can be described by a single form factor (usually denoted by
f+). A second form factor1, being also present in principle,
enters only together with the tiny quantity m2

e/M
2
K �

10−6 in the formula for the Dalitz plot density. Therefore,
these contributions are utterly negligible and the invariant
amplitude (in the absence of radiative corrections) can be
simplified to

M =
GF√

2
V ∗

us lµ C f
(0)
+ (t) (pK + pπ)µ, (5)

where
lµ = ū(pν) γµ (1 − γ5) v(pe) (6)

denotes the weak leptonic current, and

C =
{

1 for K0
e3,

1/
√

2 for K+
e3.

(7)

The form factor depends on the single kinematical variable
t = (pK − pπ)2 and the superscript (0) indicates the limit
e = 0.

The spin-averaged decay distribution ρ(y, z) for Ke3
depends on the two variables

z =
2pK ·pπ

M2
K

=
2Eπ

MK
, y =

2pK ·pe

M2
K

=
2Ee

MK
, (8)

where Eπ (Ee) is the pion (positron) energy in the kaon rest
frame, and MK indicates the mass of the decaying kaon.
Alternatively one may also use two of the Lorentz invariants

t = (pK − pπ)2, u = (pK − pe)2, s = (pπ + pe)2. (9)

Then the distribution reads

ρ(0)(y, z) = N A
(0)
1 (y, z) |f (0)

+ (t)|2, (10)

with

N = C2 G2
F |Vus|2M5

K

128π3 , Γ =
∫
D

dy dz ρ(0)(y, z). (11)

1 See [3] for the general K�3 form factor decomposition.

The kinematical density is given by

A
(0)
1 (y, z) = 4(z + y − 1)(1 − y) + re(4y + 3z − 3)

− 4rπ + re(rπ − re), (12)

where

re =
m2

e

M2
K

, rπ =
M2

π

M2
K

. (13)

The boundaries of the domain of integration D (Dalitz
plot) in (11) can be found in Sect. 4.

Virtual photon exchange as well as the contributions of
the appropriate electromagnetic counterterms change the
form factor [3],

f
(0)
+ (t) → F+(t, v), (14)

and the distribution (10) has to be replaced with

�(y, z) = N A
(0)
1 (y, z) |F+(t, v)|2. (15)

The full form factor F+(t, v) depends now also on a second
kinematical variable v as it cannot be interpreted anymore
as the matrix element of a quark current between hadronic
states. The variable v is taken as u = (pK − pe)2 for K+

e3
and s = (pπ + pe)2 for K0

e3. Diagrammatically, the de-
pendence on the second variable is generated by one-loop
graphs where a photon line connects the charged meson
and the positron.

The form factor F+(t, v) contains infrared singularities
due to low-momentum virtual photons. They can be regu-
larized by introducing a small photon mass Mγ . The depen-
dence on an infrared cutoff reflects the fact that F+(t, v)
cannot be interpreted as an observable quantity but has
to be combined with the contributions from real photon
emission to arrive at an infrared-finite result.

It is convenient to decompose F+(t, v) into a structure-
dependent effective form factor f+(t) and a remaining part
containing in particular the universal long-distance correc-
tions [3]. To order α, the full form factor is given by

F+(t, v) =
[
1 +

α

4π
Γ (v, m2

e, M
2; Mγ)

]
f+(t), (16)

where M denotes the mass of the charged meson. Expressed
in terms of the functions Γc, Γ1, Γ2 defined in [3], Γ can
be written as

Γ (v, m2
e, M

2; Mγ) (17)

= Γc(v, m2
e, M

2; Mγ) + Γ1(v, m2
e, M

2) + Γ2(v, m2
e, M

2).

The explicit expressions for Γc, Γ1, Γ2 are displayed in Ap-
pendix A. The function Γc, containing a logarithmic de-
pendence on the infrared regulator Mγ , corresponds to
the long-distance component of the loop amplitudes which
generates infrared and Coulomb singularities. In the case
of the K+ decay, the Coulomb singularity is outside the
physical region, while it occurs on its boundary for the K0

decay. The other terms represent the remaining non-local
photon loop contribution.
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Note that the effective form factor f+(t) depends only
on the single variable t. This can be achieved [3] in the
case of Ke3 decays by the decomposition defined by (16)
and (17). The explicit form of fK0π−

+ (t) and fK+π0

+ (t) will
be reviewed in the next section.

In order to arrive at an infrared-finite (observable) re-
sult, also the emission of a real photon has to be taken into
account. The radiative amplitude Mγ can be expanded in
powers of the photon energy Eγ ,

Mγ = Mγ
(−1) + Mγ

(0) + . . . , (18)

where
Mγ

(n) ∼ (Eγ)n. (19)

Gauge invariance relates Mγ
(−1) and Mγ

(0) to the non-
radiative amplitude M, and thus to the full form factor
F+(t, v). Upon taking the square modulus and summing
over spins, the radiative amplitude generates a correction
ργ(y, z) to the Dalitz plot density of (15). The observable
distribution is now the sum

ρ(y, z) = �(y, z) + ργ(y, z). (20)

Both terms on the right-hand side of this equation contain
infrared divergences (from virtual or real soft photons).
Upon using (16) and expanding to first order in α, the
observable density can be written in terms of a new kine-
matical density A1 [3], and the effective form factor f+(t)
defined in (16),

ρ(y, z) = N SEW A1(y, z) |f+(t)|2, (21)

where we have pulled out the short-distance enhancement
factor [5]

SEW := SEW(Mρ, MZ). (22)

The kinematical density A1 is given by [3]

A1(y, z) = A
(0)
1 (y, z)

[
1 + ∆IR(y, z)

]
+ ∆IB

1 (y, z). (23)

The function ∆IR(y, z) arises by combining the contribu-
tions from |Mγ

(−1)|2 and Γ (v, m2
e, M

2; Mγ). Although the
individual contributions contain infrared divergences, the
sum is finite. The factor ∆IB

1 (y, z) originates from averag-
ing the remaining terms of |Mγ |2 [see (18)] and are infrared
finite. Note that both ∆IR(y, z) and ∆IB

1 (y, z) are sensitive
to the treatment of real photon emission in the experiment.
A detailed analysis of these corrections for the K+

e3 decay
was performed in [3]. The analogous discussion for the K0

e3
case will be given in Sects. 4 and 5.

Finally, integration over the Dalitz plot allows one to
define the infrared-safe partial width, from which one ex-
tracts eventually the CKM element |Vus|. With the linear
expansion of the effective form factor,

fKπ
+ (t) = fKπ

+ (0)
(

1 +
t

M2
π±

λKπ
+

)
, (24)

the infrared-finite decay rate

Γ (Ke3(γ)) := Γ (K → πe+νe) + Γ (K → πe+νeγ) (25)

can be expressed as

Γ (Ke3(γ)) = N SEW
∣∣fKπ

+ (0)
∣∣2 IK , (26)

where

IK =
∫
D

dy dz A1(y, z)
(

1 +
t

M2
π±

λKπ
+

)2

= a0 + a1 λKπ
+ + a2 (λKπ

+ )2. (27)

In principle, one could easily go beyond the linear ap-
proximation (24) for the determination of the phase space
integral. Indeed, the curvature of the form factor, which
has been neglected in (24), is determined by (numerically
unknown) coupling constants arising at O(p6) in the chiral
expansion [6]. A measurement of this curvature term in
future experiments would be highly welcome. However, in
view of the present experimental and theoretical situation,
we restrict ourselves to the linear approximation (24). In
our analysis, we are using the experimentally determined
values of the slope parameters. This method [3] minimizes
the uncertainties in the determination of the phase space
integrals for the time being.

In order to extract |Vus| at the ∼ 1% level, we have
to provide a theoretical estimate of the form factor fKπ

+
at t = 0 and of the phase space integral in the presence
of isospin breaking and electromagnetic effects. We devote
the next two sections to these tasks.

3 The form factors fK0π−
+ (t) and fK+π0

+ (t)

In this section we review the structure of the Ke3 form
factors in the framework of chiral perturbation theory, in-
cluding contributions of order p4 (with isospin breaking) [7]
and e2p2 [3], as well as p6 effects in the isospin limit [6,8].

It is convenient [3] to write the effective form factor as
the sum of two terms,

f+(t) = f̃+(t) + f̂+. (28)

The first one represents the pure QCD contributions (in
principle at any order in the chiral expansion) plus the
electromagnetic contributions up to order e2p2 generated
by the non-derivative Lagrangian

Le2p0 = e2F 4
0 Z〈Qem

L Qem
R 〉. (29)

Diagrammatically, they arise from purely mesonic graphs.
In the definition of f̃K+π0

+ (t), we have included also the
electromagnetic counterterms relevant to π0–η mixing. The
second term in (28) represents the local effects of virtual
photon exchange of order e2p2.

3.1 Formal expressions

The explicit form of f̃K0π−
+ (t) is given by [7]

f̃K0π−
+ (t) = 1 +

1
2
HK+π0(t) +

3
2
HK+η(t) + HK0π−(t)
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+
√

3 ε(2) [HKπ(t) − HKη(t)] + . . . , (30)

where the ellipsis indicates contributions of higher orders
in the chiral expansion (see below for the inclusion of the
O(p6) term in the isospin limit). The function HPQ(t) [7,9]
is reported in Appendix B. The leading order π0–η mixing
angle ε(2) is given by

ε(2) =
√

3
4

md − mu

ms − m̂
, m̂ = (mu + md)/2. (31)

The local electromagnetic term takes the form [3]

f̂K0π−
+ = 4πα

[
2Kr

12(µ) +
4
3
X1 − 1

2
X̃r

6(µ) (32)

− 1
32π2

(
3 + log

m2
e

M2
π±

+ 3 log
M2

π±

µ2

)]
.

The parameter Kr
12(µ) denotes the renormalized (scale-

dependent) part of the coupling constant K12 introduced
in the effective Lagrangian of order e2p2 [10] describing
the interaction of dynamical photons with hadronic de-
grees of freedom [11,12]. The “leptonic” couplings X1, X6

have been defined in [4]. The coupling constant X̃r
6(µ) is

obtained from Xr
6(µ) after the subtraction of the short-

distance contribution [3],

Xr
6(µ) = XSD

6 + X̃r
6(µ), (33)

where

e2XSD
6 = − e2

4π2 log
M2

Z

M2
ρ

= 1 − SEW(Mρ, MZ), (34)

whichdefines [5] also the short-distance enhancement factor
SEW(Mρ, MZ) to leading order. Including also the leading
QCD correction [5], it assumes the numerical value

SEW = 1.0232. (35)

We list here also the contributions to the K+
e3 form

factor fK+π0

+ (t). Displaying only terms up to O(p4), the
mesonic loop contribution is given by [3]

f̃K+π0

+ (t) = 1 +
√

3
(
ε(2) + ε

(4)
S + ε

(4)
EM

)
(36)

+
1
2
HK+π0(t) +

3
2
HK+η(t) + HK0π−(t)

+
√

3 ε(2)
[
5
2
HKπ(t) +

1
2
HKη(t)

]
+ . . .

The pure QCD part of this expression was given in [7], the
inclusion of electromagnetic contributions to the meson
masses and the additional contribution of O(e2p2), due
to π0–η mixing [11], were added in [12]. The sub-leading
contributions to the π0–η mixing angle entering in (36) are

ε
(4)
S = − 2 ε(2)

3(4πF0)2(M2
η − M2

π)

×{(4π)2 64 [3L7 + Lr
8(µ)] (M2

K − M2
π)2 (37)

−M2
η (M2

K − M2
π) log

M2
η

µ2 + M2
π(M2

K − 3M2
π) log

M2
π

µ2

− 2M2
K(M2

K − 2M2
π) log

M2
K

µ2 − 2M2
K(M2

K − M2
π)
}

and

ε
(4)
EM =

2
√

3 α M2
K

108 π (M2
η − M2

π)

×
{

2(4π)2
[

− 6Kr
3(µ)+3Kr

4(µ)+2Kr
5(µ)+2Kr

6(µ)
]

− 9Z

(
log

M2
K

µ2 + 1
)}

. (38)

The local electromagnetic contribution for K+
e3 is given by

f̂K+π0

+ = 4πα

[
2Kr

12(µ) − 8
3
X1 − 1

2
X̃r

6(µ) (39)

− 1
32π2

(
3 + log

m2
e

M2
K±

+ 3 log
M2

K±

µ2

)]
.

What is still missing in the expressions (30) and (36) is
the contribution of order p6. Neglecting isospin breaking
effects at this order, the form factors of both processes
receive an equal shift which has been calculated rather
recently [6,8] in terms of loop functions (containing some of
the Li) and certain combinations of the coupling constants
Ci [13,14] arising at order p6 in the chiral expansion. For our
purposes, we will need only the value of this contribution
at t = 0 [6],

f̃Kπ
+ (0)

∣∣∣
p6

= − 8
(

M2
K − M2

π

F 2
π

)2

[Cr
12(µ) + Cr

34(µ)]

+ ∆loops(µ). (40)

3.2 Numerical estimates

In view of the subsequent application to the extraction of
|Vus| from Ke3 partial widths, we report here numerical
estimates for the vector form factor fKπ

+ at zero momen-
tum transfer (t = 0). We recall here that in principle also
the slope parameter λKπ

+ can be predicted within chiral
perturbation theory. However, due to the relatively large
uncertainty induced by the low energy constant Lr

9(Mρ),
we shall use the measured value of λKπ

+ in the final analysis.
Apart from meson masses and decay constants, which

lead to negligible uncertainties, the vector form factor de-
pends on a certain number of parameters (quark mass ratios
and low energy constants), whose input we now summarize.

For the quark mass ratio ε(2) defined in (31) we use [15]

ε(2) = (1.061 ± 0.083) × 10−2. (41)

This number is consistent with the one obtained from a
p6 fit [16] of the input parameters of chiral perturbation
theory within the large errors of the latter analysis.
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For the particular combination of Li entering in (37),
we take

3L7 + Lr
8(Mρ) = (−0.33 ± 0.08) × 10−3, (42)

which is again consistent with the analysis of order p6

in [16].
For the relevant combination of electromagnetic low

energy couplings appearing in (38), we use [17]

K̂r(Mρ) := (−6K3 + 3K4 + 2K5 + 2K6)r(Mρ)

= (5.7 ± 6.3) × 10−3, (43)

while for the coupling constant K12 entering in the purely
electromagnetic part (32) and (39) we take [18]

Kr
12(Mρ) = (−4.0 ± 0.5) × 10−3. (44)

Finally, for the (unknown) “leptonic” constants we may
resort to the usual bounds suggested by dimensional anal-
ysis:

|X1|, |X̃r
6(Mρ)| ≤ 1/(4π)2 � 6.3 × 10−3. (45)

An alternative strategy will be discussed in Sect. 7.
The above numerical input allows us to evaluate the

form factor for both K0π− and K+π0 transitions. To order
p4, the QCD part (30) of the form factor at t = 0 is uniquely
determined in terms of physical meson masses (apart from
a tiny contribution proportional to the leading order π0–η
mixing angle):

f̃K0π−
+ (0) = 0.97699 ± 0.00002. (46)

Using (44) and (45), we find

f̂K0π−
+ = 0.0046 ± 0.0001 ± 0.0008 ± 0.0003

= 0.0046 ± 0.0008 (47)

for the local electromagnetic contribution to the form fac-
tor. The errors given in the first line of (47) correspond
to the uncertainties of Kr

12, X1 and X̃r
6. In this term, the

relative uncertainty is almost exclusively due to the poor
present knowledge of X1. Despite this, in the final result
for fK0π−

+ (0) this is an effect of only 0.08%.
Combining the values given above, we obtain the result

at O(p4, (md − mu)p2, e2p2):

fK0π−
+ (0) = 0.9816 ± 0.0008. (48)

To this value, we have to add the contribution (40) of or-
der p6, which suffers from a much larger uncertainty. Before
turning to this issue, we also list the corresponding results
for the K+π0 form factor at O(p4, (md − mu)p2, e2p2) [3]:

f̃K+π0

+ (0) = 1.0002 ± 0.0022, (49)

f̂K+π0

+ = 0.0032 ± 0.0016, (50)

fK+π0

+ (0) = 1.0034 ± 0.0027. (51)

3.3 The p6 contribution

Being the largest source of theoretical uncertainty in the
extraction of |Vus|, the p6 contribution (40) deserves a
separate discussion. The loop part is given by [6]

∆loops(Mρ) = 0.0146 ± 0.0064. (52)

The quoted error reflects the uncertainty in the p4 couplings
Lr

i (contributing at order p6 through insertions in one-loop
diagrams), as well as a conservative estimate of higher order
effects [6]. Concerning the local contribution in (40),

f̃Kπ
+ (0)

∣∣∣local

p6
= −8

(
M2

K − M2
π

F 2
π

)2

[Cr
12(Mρ) + Cr

34(Mρ)] ,

(53)
there are at present several open questions. As pointed out
in [6] the couplings Cr

12(µ) and Cr
34(µ) are experimentally

accessible in Kµ3 decays, as they are related to slope and
curvature of the scalar form factor f0(t). Experimental
efforts in this direction have started, and in the long run
this approach will give the most reliable result. For the
time being, following [6] we identify the estimate of short
range contributions to fKπ

+ (0) given in [19] with (53):

f̃Kπ
+ (0)

∣∣∣local

p6
= −0.016 ± 0.008. (54)

A value of this size seems to be supported by a recent
coupled channels dispersive analysis of the scalar form fac-
tor [20], and can also be obtained by resonance satura-
tion [21] for the couplings entering in (53),

Cres
12 = −F 2

π

2
cdcm

M4
S

,

Cres
34 =

F 2
π

2

(
cdcm + c2

m

M4
S

+
d2

m

M4
P

)
. (55)

Using [22]

cm = cd = Fπ/2, dm = Fπ/2
√

2, MP =
√

2MS , (56)

we obtain

Cres
12 = −1

8

(
Fπ

MS

)4

, Cres
34 =

17
64

(
Fπ

MS

)4

. (57)

Inserting MS = 1.48 GeV (scenario A of [21]), we find

f̃Kπ
+ (0)

∣∣∣local

p6
= −0.012, (58)

fully consistent with (54)2.

2 We should remark here that the estimate (57) is not the
complete resonance saturation result, which actually involves
more resonance couplings [21]. It represents, however, a well
defined starting point and further work along these lines should
provide the size of missing contributions and an estimate of
the uncertainty.
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It is important to stress here that the above methods
do not specify the chiral renormalization scale at which the
estimate of the relevant p6 couplings applies. This in turn
leads to an intrinsic ambiguity in the final answer, as the
chosen reference scale µ = Mρ = 0.77 GeV is somewhat
arbitrary. The impact of this effect can be quantified by
studying the scale dependence of Cr

12+Cr
34 (or equivalently

of ∆loops) with renormalization group techniques [14]. We
find ∆loops(1 GeV) = 0.0043 and ∆loops(Mη) = 0.0310. We
conclude that the present uncertainty on the p6 contribu-
tion to fKπ

+ (0) is at least 0.01.
Keeping in mind the above caveats, as a net effect,

there is a large destructive interference between the loop
part (52) and the local contribution (54) and we arrive at

f̃Kπ
+ (0)

∣∣∣
p6

= −0.001 ± 0.010. (59)

Adding this number to the ones in (48) and (51), we obtain
our final values at O(p6, (md − mu)p2, e2p2):

fK0π−
+ (0) = 0.981 ± 0.010, (60)

fK+π0

+ (0) = 1.002 ± 0.010. (61)

We remark here that previous analyses [3, 23] of Ke3 de-
cays and |Vus| did not include the p6 loop contribution
∆loops(Mρ), and that further work is needed to clarify
whether the uncertainty in (60) and (61) is a realistic one.

4 Real photon radiation in K0
e3

4.1 Photon-inclusive decay distribution

We present here in detail a possible treatment of the con-
tribution of the real photon emission process

K0
L(pK) → π−(pπ) e+(pe) νe(pν) γ(pγ) , (62)

in complete analogy with the procedure proposed in [24]
and [3] for the analysis of the K+

e3 decay. To this end we
define the kinematical variable [25]

x = (pν + pγ)2 = (pK − pπ − pe)2, (63)

which determines the angle between the pion and positron
momentum for given energies Eπ, Ee. For the analysis
of the experimental data, we suggest to accept all pion
and positron energies within the whole K0

e3 Dalitz plot D
given by

2
√

re ≤ y ≤ 1 + re − rπ,

a(y) − b(y) ≤ z ≤ a(y) + b(y), (64)

where

a(y) =
(2 − y) (1 + re + rπ − y)

2(1 + re − y)
,

b(y) =

√
y2 − 4re (1 + re − rπ − y)

2(1 + re − y)
, (65)

or, equivalently,

2
√

rπ ≤ z ≤ 1 + rπ − re,

c(z) − d(z) ≤ y ≤ c(z) + d(z), (66)

where

c(z) =
(2 − z) (1 + rπ + re − z)

2(1 + rπ − z)
,

d(z) =
√

z2 − 4rπ (1 + rπ − re − z)
2(1 + rπ − z)

, (67)

and all kinematically allowed values of theLorentz invariant
x defined in (63). Note that this prescription excludes a
part of the pure Ke3γ events.

The situation is best explained by Fig. 1. The dotted
area refers to the K0

e3 Dalitz plot, whereas the striped region
shows which part of the projection of the K0

e3γ phase space
onto the (y, z) plane is excluded.

This translates into the distribution

ργ(y, z) =
MK

212π5

xmax∫
M2

γ

dx
1
2π

∫
d3pν

p0
ν

d3pγ

p0
γ

(68)

×δ(4)(pK − pπ − pe − pν − pγ)
∑
pol

|Mγ |2,

with

xmax = M2
K {1 + rπ + re − y − z (69)

+
1
2

[
yz +

√
(y2 − 4re)(z2 − 4rπ)

]}
.

In (68) we have extended the integration over the whole
range of the invariant mass of the unobserved νe γ system.
The integrals occurring in (68) have the general form [24]

Im,n(p1, p2; P, Mγ) := (70)

1
2π

∫
d3q

q0

d3k

k0

δ(4)(P − q − k)
(p1 · k+ M2

γ/2)m(p2 ·k + M2
γ/2)n

.

The results for these integrals in the limit Mγ = 0 can be
found in the appendix of [24]. Using the definition (70),
the radiative decay distribution (68) can be written as [25]

ργ(y, z) =
α

π

[
ρ(0)(y, z)I0(y, z; Mγ) (71)

+
G2

F|Vus|2|fK0π−
+ |2MK

64π3

xmax∫
0

dx
∑
m,n

cm,nIm,n

 ,

where the infrared divergences are now confined to3

I0(y, z; Mγ)

3 The right-hand side of the corresponding expression (6.7)
in [3] should be multiplied by 1/4.
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Fig. 1. Dalitz plot for the three and four body
final states

=
1
4

xmax∫
M2

γ

dx
[
2 pe ·pπ I1,1(pe, pπ; pK − pπ − pe; Mγ)

− M2
π I0,2(pe, pπ; pK − pπ − pe; Mγ)

− m2
e I2,0(pe, pπ; pK − pπ − pe; Mγ)

]
. (72)

The explicit form of the function I0 can be found in Ap-
pendix C. The coefficients cm,n were given in (21) of [25].

The function ∆IR introduced in (23) can now be related
to I0 by

∆IR(y, z) =
α

π

[
I0(y, z; Mγ) +

1
2
Γ (s, m2

e, M
2
π ; Mγ)

]
.

(73)
An analytic expression of the integral occurring in the

last line of (71) was given in Appendix B of [26] in terms
of the quantities Vi:

xmax∫
0

dx
∑
m,n

cm,nIm,n =
7∑

i=0

Vi. (74)

As already noticed in [3], the quantity J9(i) given in (A9)
of [26] (which is needed for the evaluation of V7 = U7)
contains two mistakes: the plus sign in the last line of (A9)
should be replaced by a minus sign, and |βmax

i | at the end of
the first line of (A9) should simply read βmax

i . The function
∆IB

i introduced in (23) can now be written as4

∆IB
1 =

2α

πM4
K

7∑
i=0

Vi

∣∣∣
ξ=0

. (75)

4 Setting ξ = 0 in the expressions of [26] amounts to neglect
the form factor f−(t), which is an excellent approximation in
Ke3 modes.

The expressions in (73) and (75) fully determine the
radiatively corrected decay density A1(y, z) (23). In order
to appreciate the effect of these universal long-distance
corrections, we report the kinematical density A

(0)
1 in the

absence of electromagnetism for several individual points of
the Dalitz plot in Table 1, while the corresponding radiative
corrections entering in (23) are displayed in Table 2. Note
that the relative size of the electromagnetic corrections for
some points (especially near the boundary) exceeds the
average shift considerably. For completeness, we display
a sample of numerical values for the kinematical densi-
ties (12) and (23) also for the K+

e3 decay mode in Tables 3
and 4.

4.2 Phase space integrals

Once the function A1(y, z) is known, the numerical coeffi-
cients a0,1,2 entering in the phase space integral (27) can
be calculated by integration over the Dalitz plot. These
are reported in Table 5 for the K0

e3 mode, while the cor-
responding results for K+

e3 can be found in [3]. We recall
once again that these numbers correspond to the specific
prescription for the treatment of real photons described in
the previous section: accept all pion and positron energies
within the whole Ke3 Dalitz plot D and all kinematically
allowed values of the Lorentz invariant x defined in (63).

A full evaluation of the phase space factor IK (27)
requires knowledge of the slope parameter. For both modes
we employ the measured values [1]5,

5 For the K+
e3 mode the slope parameter given in [1] has

received a small change compared to the PDG 2000 number
used in [3], which amounts to a negligible difference in the final
result.
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Table 1. A
(0)
1 (y, z) × 102 for K0

e3 decay

z\y 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
1.05 6.54 36.54 58.54 72.54 78.54 76.54 66.54 48.54 22.54
1.00 19.54 43.54 59.54 67.54 67.54 59.54 43.54 19.54
0.95 2.54 28.54 46.54 56.54 58.54 52.54 38.54 16.54
0.90 13.54 33.54 45.54 49.54 45.54 33.54 13.54
0.85 20.54 34.54 40.54 38.54 28.54 10.54
0.80 7.54 23.54 31.54 31.54 23.54 7.54
0.75 12.54 22.54 24.54 18.54 4.54
0.70 1.54 13.54 17.54 13.54 1.54
0.65 4.54 10.54 8.54
0.60 3.54 3.54

Table 2. [A1(y, z) − A
(0)
1 (y, z)] × 102 for K0

e3 decay

z\y 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
1.05 1.685 2.071 1.513 0.562 −0.523 −1.541 −2.295 −2.542 −1.864
1.00 2.188 1.999 1.243 0.237 −0.799 −1.651 −2.061 −1.582
0.95 1.775 2.024 1.464 0.562 −0.432 −1.295 −1.757 −1.356
0.90 1.844 1.524 0.749 −0.180 −1.022 −1.501 −1.140
0.85 1.476 0.856 0.012 −0.792 −1.269 −0.925
0.80 1.313 0.901 0.162 −0.589 −1.049 −0.705
0.75 0.883 0.276 −0.407 −0.839 −0.471
0.70 0.772 0.353 −0.243 −0.633 −0.200
0.65 0.384 −0.097 −0.428
0.60 0.031 −0.212

Table 3. A
(0)
1 (y, z) × 102 for K+

e3 decay

z\y 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
1.05 8.10 38.10 60.10 74.10 80.10 78.10 68.10 50.10 24.10
1.00 21.10 45.10 61.10 69.10 69.10 61.10 45.10 21.10
0.95 4.10 30.10 48.10 58.10 60.10 54.10 40.10 18.10
0.90 15.10 35.10 47.10 51.10 47.10 35.10 15.10
0.85 0.10 22.10 36.10 42.10 40.10 30.10 12.10
0.80 9.10 25.10 33.10 33.10 25.10 9.10
0.75 14.10 24.10 26.10 20.10 6.10
0.70 3.10 15.10 19.10 15.10 3.10
0.65 6.10 12.10 10.10 0.10
0.60 5.10 5.10
0.55 0.10

Table 4. [A1(y, z) − A
(0)
1 (y, z)] × 102 for K+

e3 decay

z\y 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
1.05 1.494 1.697 1.174 0.313 −0.670 −1.593 −2.275 −2.486 −1.841
1.00 1.708 1.364 0.610 −0.320 −1.236 −1.946 −2.213 −1.638
0.95 1.558 1.378 0.732 −0.128 −1.006 −1.704 −1.983 −1.440
0.90 1.356 0.821 0.036 −0.796 −1.474 −1.758 −1.240
0.85 1.321 0.898 0.190 −0.593 −1.248 −1.533 −1.035
0.80 0.971 0.341 −0.392 −1.021 −1.305 −0.822
0.75 0.490 −0.191 −0.794 −1.075 −0.597
0.70 0.639 0.010 −0.566 −0.841 −0.348
0.65 0.214 −0.333 −0.598 −0.020
0.60 −0.094 −0.340
0.55 −0.014
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Table 5. Coefficients of the K0
e3 phase space integral

a0 a1 a2

α = 0 0.09390 0.3245 0.4485
α �= 0 0.09358 0.3241 0.4475

λK0π−
+ = 0.0291 ± 0.0018, (76)

λK+π0

+ = 0.0278 ± 0.0019. (77)

For K0
e3 decays the final numbers

IK0 |α=0 = 0.10372, (78)

IK0 = 0.10339 ± 0.00063, (79)

reveal that radiative corrections effectively induce a nega-
tive shift of 0.32% in the factor IK0 .

On the other hand, for K+
e3 one finds

IK+ |α=0 = 0.10616, (80)

IK+ = 0.10482 ± 0.00067, (81)

corresponding to a negative shift of 1.27% induced by the
radiative corrections. This is essentially unchanged from
the analysis in [3].

5 Extraction of |Vus| from K0
e3 decays

The CKM matrix element |Vus| can be extracted from the
K0

e3 decay parameters by

|Vus| =

[
128 π3 Γ (K0

e3(γ))

G2
F M5

K0 SEW IK0

]1/2

· 1
fK0π−
+ (0)

. (82)

In spite of the unsatisfactory present status of the K0
e3

data, we use them here as an illustration of the application
of the above formula.
(1) With [1]

Γ (K0
e3(γ))fit = (7.50 ± 0.08) × 106 s−1 (83)

and (60), we find

|Vus| = 0.2153 ± 0.0011 ± 0.0007 ± 0.0022

= 0.2153 ± 0.0026, (84)

where the errors correspond to

∆|Vus| = |Vus|
(

±1
2

∆Γ

Γ
± 0.05 · ∆λ+

λ+
± ∆f+(0)

f+(0)

)
= |Vus|

(± 0.5% ± 0.3% ± 1.0%
)
. (85)

(2) A more realistic estimate of the present K0
e3 uncertainty

is most probably given by [1]

Γ (K0
e3(γ))average = (7.7 ± 0.5) × 106 s−1, (86)

which implies

|Vus| = 0.2182 ± 0.0071 ± 0.0007 ± 0.0022

= 0.2182 ± 0.0075, (87)

corresponding to

∆|Vus| = |Vus|
(± 3.3% ± 0.3% ± 1.0%

)
. (88)

(3) Finally, combining the K0
L lifetime from the PDG

with the preliminary photon-inclusive branching ratio from
KLOE [27] BR(KL

e3(γ)) = 0.384 ± 0.002stat., we find6

Γ (K0
e3(γ))KLOE(prel.) = (7.43 ± 0.07) × 106 s−1, (89)

corresponding to

|Vus| = 0.2143 ± 0.0010 ± 0.0007 ± 0.0022

= 0.2143 ± 0.0025. (90)

Since the present statistical precision is comparable to
the one of the PDG fit, we expect that the experimental side
of the problem will improve considerably as soon as final
results from KLOE [27] and NA48 [28] will become avail-
able.

6 Extraction of |Vus| from K+
e3 decays

In this section, we update our previous analysis of the K+
e3

decay [3] in view of the new value (59) for the contribution
of order p6 and the recent E865 result. All other parameters
of the K+

e3 analysis in [3] remain essentially unchanged. Due
to the inconsistency between PDG 2002 and E865 results,
we analyze them separately.
(1) Using the PDG-fit7 input

Γ (K+
e3(γ)) = (3.93 ± 0.05) × 106 s−1, (91)

and assuming that this number refers to the inclusive width
of Sect. 4 one obtains

|Vus| = 0.2186 ± 0.0014 ± 0.0007 ± 0.0023

= 0.2186 ± 0.0027. (92)

(2) The K+
e3(γ) branching ratio measured by the E865 Col-

laboration [2], when combined with the K± lifetime from
the PDG, leads to the decay width

Γ (K+
e3(γ)) = (4.12 ± 0.08) × 106 s−1. (93)

Note that the value BR(K+
e3(γ)) given in [2] contains also

events outside the K+
e3 Dalitz plot boundary. This addi-

tional 0.5% contribution has been subtracted in (93) in
6 The systematic uncertainty in the KLOE result is not yet

known [27].
7 For K+

e3 the difference between “fit” and “average” is not
sizeable.
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accordance with our prescription of the treatment of real
photons. Finally, we find

|Vus| = 0.2238 ± 0.0022 ± 0.0007 ± 0.0023

= 0.2238 ± 0.0033. (94)

Together with |Vud| and |Vub| as shown in (1), this num-
ber implies

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0024 ± 0.0021, (95)

in rather good agreement with a unitary mixing matrix.
The sizeable disagreement between the result of E865

and the PDG-fit (from old experiments) calls for further
experimental efforts in this decay channel.

7 Combined analysis of K0
e3 and K+

e3 data

K+
e3 and K0

e3 branching fractions allow for two independent
determinations of fK0π−

+ (0) · |Vus|, provided one brings
under theoretical control isospin breaking in the ratio of
form factors at t = 0,

r+0 := fK+π0

+ (0)
/

fK0π−
+ (0). (96)

The standard model allows for a remarkably precise pre-
diction of this quantity. The contributions of order p6 as
well as the couplings X6 and K12 cancel, and we are left
with the expression

rth
+0 = 1 +

√
3
(
ε(2) + ε

(4)
S + ε

(4)
EM

)
− α

4π
log

M2
K±

M2
π±

− 16παX1 + . . .

= 1.022 ± 0.003 − 16παX1, (97)

where the ellipsis in the second line stands for isospin vio-
lating corrections arising at O((md − mu)p4, e2p4) in the
chiral expansion. We expect them to shift the result at
most by 10−3. Also these not yet determined contribu-
tions have been accounted for in the error given in the last
line of (97). Although no theoretical estimate of the cou-
pling X1 is presently available, there is no reason why this
low energy constant should lie outside the range suggested
by naive dimensional analysis (45). Already such a rough
estimate of X1 shows that r+0 is confined to the rather
narrow band

1.017 ≤ rth
+0 ≤ 1.027. (98)

We emphasize that sizeable deviations from this predicted
range could only be understood as
(i) failure of naive dimensional analysis for X1 (and a dra-
matic one) or
(ii) failure of chiral power counting.

On the other hand, the ratio (96) is related to the ob-
servable

rexp
+0 =

(
2 Γ (K+

e3(γ)) M5
K0 IK0

Γ (K0
e3(γ)) M5

K+ IK+

)1/2

, (99)

Fig. 2. |Vus| · fK0π−
+ (0) from Ke3 modes (see text for details).

The KLOE result is preliminary and the quoted error is sta-
tistical only [27]

with the caveat that the phase space factors IK be evaluated
according to the same prescription for real photons adopted
in measuring Γ (Ke3(γ)). Once again, it is instructive to
consider several cases.
(1) Using (83) and (93), we find

rexp
+0 = 1.062 ± 0.010 ± 0.006 ± 0.003 ± 0.003

= 1.062 ± 0.013, (100)

where the errors given in the first line refer to the ex-
perimental uncertainties of Γ (K+

e3(γ)), Γ (K0
e3(γ)), λK+π0

+

and λK0π−
+ , respectively. The outcome is clearly in con-

flict with the prediction (98) of the standard model and
indicates indeed an inconsistency of the present K+

e3 and
K0

e3 data. This is also illustrated by Fig. 2 where data from
K+

e3 (E865) and K0
e3 (PDG-fit), after using rth

+0 as discussed
above, lead to two inconsistent determinations of the prod-
uct fK0π−

+ (0) · |Vus|.
(2) Taking (86) instead of (83), the resulting numbers are

rexp
+0 = 1.049 ± 0.010 ± 0.034 ± 0.003 ± 0.003

= 1.049 ± 0.036. (101)

This value is consistent with (98) however with a large
error caused by the big uncertainty in (86).
(3) The inconsistency is somehow mitigated when one uses
the presentPDG-fit entries for bothK+

e3 andK0
e3, leading to

rexp
+0 = 1.038 ± 0.006 ± 0.006 ± 0.003 ± 0.003

= 1.038 ± 0.010. (102)

The present confusing status is summarized in Fig. 2,
where we plot fK0π−

+ (0) · |Vus| as determined from different
K+

e3 and K0
e3 experimental input8. The points correspond-

ing to K+
e3 have been obtained by using the central value

for rth
+0. The overall 0.78% normalization uncertainty of

these points is not reported in the plot.

8 Plots of this type were first used in [29] and can be found
also in [23,27,30].



V. Cirigliano: Ke3 decays and CKM unitarity 63

For the analysis of forthcoming high-precision data on
Ke3 decays we propose the following strategy:
(a) Check the consistency of K+

e3 and K0
e3 data by com-

paring rexp
+0 with the theoretically allowed range (98).

(b) Determine the low energy constant X1 from rexp
+0 by

inverting (97),

X1 =
1.022 ± 0.003(theor.) − rexp

+0

16π α
. (103)

(We refrain from extracting a number for X1 based on the
present data as they are apparently inconsistent.)
(c) Recalculate f̂K0π−

+ from (32) by using the experimen-
tally determined parameter X1.
(d) Use the new number for fK0π−

+ (0) in the determination
of |Vus| as described in Sect. 5.
(e) Finally, one can also use the experimentally determined
X1 to improve radiative corrections to the pion beta de-
cay [31], relevant for the extraction of |Vud| from this mode
once the PIBETA experiment finalizes the analysis [32].

8 Conclusions

In this work, we have studied Ke3 decays using chiral per-
turbation theory with virtual photons and leptons. This
method allows for a unified and consistent treatment of
strong and electromagnetic contributions to the decay am-
plitudes within the standard model. We have considered
strong effects up to O(p6) in the chiral expansion. Isospin
breaking due to the mass difference of the light quarks has
been included up to the order (md − mu)p2. Electromag-
netic effects were taken into account up to O(e2p2). The
largest theoretical error is generated by the contribution of
O(p6) inducing a 1% uncertainty in the determination of
the Ke3 form factors. Additional theoretical investigation
is needed to increase our confidence in the estimate of local
contributions at O(p6).

Based on our theoretical results, we have described the
extraction of the CKM matrix element |Vus| from experi-
mental decay parameters and a consistency check of K+

e3
and K0

e3 data.
Using the recent E865 result on the K+

e3 branching ratio,
we find

|Vus| = 0.2238 ± 0.0033, (104)

being perfectly consistent with CKM unitarity. It should
be noted, however, that the E865 ratio differs from older
K+

e3 measurements by 2.3 σ. Furthermore, the E865 result
and the present K0

e3 rate as given by PDG 2002 (based on
very old data) and by KLOE preliminary results can hardly
be reconciled within the framework of the standard model.
Recently completed or ongoing experiments will help to
clarify the situation.

Finally a short remark on |Vud|, the second important
source of information for the check of CKM unitarity: the
present number for |Vud| is extracted from super-allowed
Fermi transitions and neutron beta decay. In principle, the
pionic beta decay (πe3) provides a unique test of these
existing determinations. This decay mode is theoretically

extremely clean [31] and also completely consistent with the
present analysis of Ke3 decays. Using the present result on
the πe3 branching ratio from the PIBETA experiment [32],
one finds

|Vud| = 0.9716 ± 0.0039, (105)

to be compared with the current PDG value shown in (1).
The final result from this experiment is expected to reach
a precision for the pion beta decay rate of about 0.5%.
Further efforts for an improvement of the experimental
accuracy of πe3 would be highly desirable.
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Appendix

A Photonic loop functions

The photonic loop contributions to the K�3 form factors
depend on the charged lepton and meson masses m2

� , M2,
as well as on the Mandelstam variables u = (pK −p�)2 (for
K+

�3 decays) and s = (pπ + p�)2 (for K0
�3 decays). In what

follows we denote by v the Mandelstam variable appropri-
ate to each decay. In order to express the loop functions
in a compact way, it is useful to define the following inter-
mediate variables:

R =
m2

�

M2 , Y = 1 + R − v

M2 , X =
Y − √

Y 2 − 4R

2
√

R
.

(106)
In terms of such variables and of the dilogarithm

Li2(x) = −
∫ 1

0

dt

t
log(1 − xt), (107)

the functions contributing to Γ (v, m2
� , M

2; Mγ) are given
by [3]

Γc(v, m2
� , M

2; Mγ) = (108)

2M2Y C(v, m2
� , M

2) + 2 log
Mm�

M2
γ

(
1 +

XY log X√
R(1 − X2)

)
.

C(v, m2
� , M

2) =
1

m�M

X

1 − X2 (109)

×
[
−1

2
log2 X + 2 log X log(1 − X2) − π2

6
+

1
8

log2 R

+ Li2(X2) + Li2

(
1 − X√

R

)
+ Li2(1 − X

√
R)
]

,

Γ1(v, m2
� , M

2) =
1
2

[
− log R + (4 − 3Y )F(v, m2

� , M
2)
]
,
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Γ2(v, m2
� , M

2) =
1
2

(
1 − m2

�

v

)
×
[

− F(v, m2
� , M

2)(1 − R) + log R
]

−1
2
(3 − Y )F(v, m2

� , M
2) (110)

and

F(v, m2
� , M

2) =
2√
R

X

1 − X2 log X . (111)

B Mesonic loop functions

The loop function HPQ(t) [7, 9] is given by

HPQ(t) =
1

F 2
0

[
hr

PQ(t, µ) +
2
3
tLr

9(µ)
]

, (112)

where

hr
PQ(t, µ)

=
1

12t
λ(t, M2

P , M2
Q) J̄PQ(t) +

1
18(4π)2

(t − 3ΣPQ)

− 1
12

{
2ΣPQ − t

∆PQ
[AP (µ) − AQ(µ)]

− 2[AP (µ) + AQ(µ)]} , (113)

with

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz), (114)

ΣPQ = M2
P + M2

Q, ∆PQ = M2
P − M2

Q,(115)

AP (µ) = − M2
P

(4π)2
log

M2
P

µ2 (116)

and

J̄PQ(t) =
1

32π2

[
2 +

∆PQ

t
log

M2
Q

M2
P

− ΣPQ

∆PQ
log

M2
Q

M2
P

− λ1/2(t, M2
P , M2

Q)
t

(117)

× log

(
[t + λ1/2(t, M2

P , M2
Q)]2 − ∆2

PQ

[t − λ1/2(t, M2
P , M2

Q)]2 − ∆2
PQ

)]
.

The quantity HPQ(0) appearing in the evaluation of f+(0)
is given by [7]

HPQ(0) = − 1
128π2F 2

0
(M2

P + M2
Q) h0

(
M2

P

M2
Q

)
,

h0(x) = 1 +
2x

1 − x2 log x. (118)

For the theoretical determination of the slope parameter
one needs the derivative of the function HPQ(t) at t = 0
given by [7]

dHPQ(t)
dt

∣∣∣∣
t=0

=
2

3F 2
0

{
Lr

9(µ) − 1
128π2 log

MP MQ

µ2

}

− 1
192π2F 2

0
h1

(
M2

P

M2
Q

)
,

h1(x) =
x3 − 3x2 − 3x + 1

2(x − 1)3
log x

+
1
2

(
x + 1
x − 1

)2

− 1
3
. (119)

C The function I0(y, z; Mγ) for K0
�3

The analytic result for the integral I0(y, z; Mγ) defined
in (72) is given by9

I0(y, z; Mγ) =
1
2β

log
1 + β

1 − β
log

2βp� ·pπ

M2
γ

− log
m�Mπ

M2
γ

+
1
2β

log
1 + β

1 − β
log

2βγ(p� ·pπ)2
(
1 − τ(0)2

)2
P ·p�P ·pπ

+
1
2β

[− Li2(η1) + Li2(1/η1) − Li2(η2) + Li2(1/η2)
]

+
2
β

[
log τ(xmax) log

1 − τ(0)τ(xmax)
1 − τ(xmax)/τ(0)

+ Li2
(
τ(xmax)τ(0)

)− Li2
(
τ(xmax)/τ(0)

)
− Li2

(
τ(0)2

)
+ π2/6

]
+
(

arcosh
p� ·pπ + xmax/2

m�Mπ

)2

−
(

arcosh
p� ·pπ

m�Mπ

)2

+ log
4 P ·p� P ·pπ

x2
max

, (120)

where

β =

√
(p� ·pπ)2 − m2

�M
2
π

p� ·pπ
, (121)

γ =
P ·p� P ·pπ

p� ·pπ
(122)

× (p� ·pπ)2 − m2
�M

2
π

2 p� ·pπ P ·p� P ·pπ − m2
�(P ·pπ)2 − M2

π(P ·p�)2
,

P = pK − pπ − p�, (123)

η1,2 =
1 − 2γ ±

√
β2 + 4γ2 − 4γ

1 + β
, (124)

τ(x) =
p� ·pπ + x/2 −√(p� ·pπ + x/2)2 − m2

�M
2
π

m�Mπ
. (125)

9 Note that the formula for I0 given in [25] is incorrect even
if the Errata are taken into account.
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